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Exascale computing promises unprecedented scientific breakthroughs assuming we are able to effectively
use the next generation of computer hardware. In this context, we believe significant investments are re-
quired to provide the comprehensive and reliable data analysis necessary for a productive scientific work-
flow. In particular, we content that we must move from the current post-processing environment and beyond
in-situ analysis to novel in-situ data transformations that combine efficient online computation with flexible
and unbiased offline data analysis and exploration. The primary challenge for existing data analysis tech-
niques is data movement especially file I/O. Currently, the overwhelming majority of analysis is performed
in post-processing using data saved during a simulation. However, as the spatial and temporal resolution of
scientific codes increases and we simulate ever more complex phenomena, it is already becoming difficult
to store sufficient information frequently enough to adequately describe the results. In practice, relatively
fewer timesteps are stored each generation of simulations and already some applications are loosing the abil-
ity to reliably track fast moving features [5, 23, 17]. At exascale, it is generally accepted that this approach
will be unsustainable as too few snapshots of a process will be permanently stored to allow a dependable
analysis. Instead, data analysis will have to be performed in-situ as the simulation is running.

This will be a formidable challenge as it is the first time many data analysis techniques will be applied at any
scale beyond some tens or hundreds of cores of an analysis cluster. Additionally, the main simulation will
likely impose strict limits on the available memory, the acceptable execution time, and the data layout. These
challenges have been recognized, and a number of efforts to develop in-situ analysis capabilities have been
started [1, 7, 15, 3]. Unfortunately, even if successful, these efforts will not solve the underlying problem. In
fact, concentrating entirely on faster, more scalable versions of existing analysis approaches, while necessary
and useful, may ultimately become a crutch with the potential to significantly delay the scientific process.
The problem is that any analysis approach that decides which questions to ask and how to answer them
before a simulation has started will inherently be limited by our current knowledge. For example, it is
feasible and in fact highly anticipated that advancing to exascale computing will produce fundamentally new
insights resulting in never before seen structures, processes, or events. Yet, a pre-set analysis is limited to
finding expected or at least anticipated phenomena. Therefore, a breakthrough may well remain undetected
since, by definition, it does not conform to the existing concepts that drove the analysis setup. Instead, we
believe a long term, sustained research effort is required to move beyond traditional analysis approaches
in order to re-enable the exploratory, post-process analysis crucial to the scientific process. In particular,
we advocate to focus on in-situ data transformations that can drastically reduce the amount of data without
effecting the results of subsequent analyses.

A well known yet often disregarded fact is that virtually all data analysis beyond simple statistics is currently
performed in an iterative manner. Whether it is to semi-automatically pre-process data to remove noise or
artifacts; to choose interesting subsets of the data to make an analysis approach tractable or highlight an
effect; or to fine tune any number of parameters, rarely will the first attempt at an analysis produce the
most useful (or any) results. However, in an in-situ setting no such iterations are possible, and instead the
entire analysis pipeline must be defined before any data is produced. While one can imagine self-adapting
algorithms and semi-automatic steering techniques, designing a single-pass analysis pipeline even for a
new variant of a well known problem is a daunting task. To assume that, for a new mathematical model
that represents previously unattainable physics, and simulating phenomena never before seen, it would be
possible to setup, a priori, a comprehensive and fully automatic analysis pipeline producing all sought after
insights seems unrealistic.
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One potential approach would be to simply use existing algorithms, suitably adapted to in-situ and exascale,
to repeatedly analyze the data using different thresholds and setups. However, to be effective and reliable,
the range of parameters would have to be so large and the set of potentially interesting aspects so broad as to
make the analysis infeasible. Another alternative might be traditional compression techniques. However, the
compression ratios required to enable exascale analysis as envisioned here would likely result in a severe loss
of information and potentially significant errors in the analysis. Instead, new data transformations should
be developed that perfectly preserve the information required for a particular analysis while sacrificing most
everything else. In this framework, rather than specifying the exact analysis to apply, a scientist would decide
what aspects of what data, ie., temperatures, velocities, material concentrations, etc., are likely to be of most
interest. For example, for indicator functions such as λ2 in vortex core detection [14], the connected sets of
high values, ie., the super-level sets, are of interest. Other features such as dissipation elements [18] are best
described by the gradient flow and yet others may be encoded by ridges [21] or clusters [6]. Instead of aiming
to extract a particular subset of such features in-situ, the data should be transformed into representations that
encode all of them leaving the selection and exploration for post-processing. This will require an in-depth,
theoretical understanding of the global arrangement of all potential features, algorithms to compute them,
as well as data structures to encode them efficiently.

For a very restricted set of features, such representations exist and have been used to great effect. In par-
ticular, a topological structure called a merge tree encodes the number of all super-level sets [5] and, with
some additional work, their location, shape, and integral properties [4]. These super-level sets describe
features such as bubbles in a Raleigh-Taylor instability [16] or burning regions in a flame [5] in a parameter-
independent manner. Most importantly, a merge tree is typically several orders of magnitude smaller than
the original data, yet it encodes the identical information about threshold-based features. Similar capabilities
are being considered in visualization, for example, by using intermediate representations for in-situ volume
rendering to create explorable images [22] rather than static snapshots.

However, merge trees and explorable images cover only a small portion of the types of analysis and visu-
alization that will be required at exascale. For gradient based features such as material core lines [10], the
Morse-Smale complex [9] seems to be the appropriate representation. However, parallelizing even the basic
algorithm has proven challenging [11], and it is unclear how to encode the resulting structure efficiently as
it can easily become larger than the source data. For ridges, some theoretical work on their structure ex-
ists [19], yet current algorithms to compute even the most pronounced subsets are notoriously sensitive [20].
For other popular techniques such as Lagrangian Coherent Structures [13, 12], the fundamental structure is
still under development and techniques to compute them [8, 2] are expensive enough to prevent a thorough
exploration even in the current post-processing framework.

Replacing a direct analysis of these features by the corresponding data transformations will allow scientists
to explore their results without the bias of a pre-determined choice of parameter and enable them to form
and test new hypotheses as needed. Without such capabilities, it will be difficult to realize the full benefits
of exascale computing as simulations will be run multiple times to adjust the analysis pipeline, unexpected
results will be missed or obscured, and extraordinary pressures will be placed on the file systems in hopes of
mitigating the problems. However, success in this area requires a concerted and long term effort in a number
of areas in math and computer science including statistics, computational geometry, topology, data analysis,
parallel computing, and systems research. Furthermore, given past experiences, the theoretical aspects of
the research such as the fundamental understanding of the various feature spaces will require a multiple year
head start. Therefore, strategic investments to foster such research are urgently needed to avoid situations in
which ground breaking science results are achieved but not recognized for the lack of analytic capabilities.
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